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Abstract
1. Forecasting ecosystem changes due to disturbances or conservation interven-

tions is essential to improve ecosystem management and anticipate unintended 
consequences of conservation decisions. Mathematical models allow practition-
ers to understand the potential effects and unintended consequences via simula-
tion. However, calibrating these models is often challenging due to a paucity of 
appropriate ecological data.

2. Ensemble ecosystem modelling (EEM) is a quantitative method used to parameter-
ize models from theoretical ecosystem features rather than data. Two approaches 
have been considered to find parameter values satisfying those features: a stand-
ard accept–reject algorithm, appropriate for small ecosystem networks, and a se-
quential Monte Carlo (SMC) algorithm that is more computationally efficient for 
larger ecosystem networks. In practice, using SMC for EEM generation requires 
advanced statistical and mathematical knowledge, as well as strong programming 
skills, which might limit its uptake. In addition, current EEM approaches have been 
developed for only one model structure (generalised Lotka–Volterra).

3. To facilitate the usage of EEM methods, we introduce EEMtoolbox, an R package 
for calibrating quantitative ecosystem models. Our package allows the generation of 
parameter sets satisfying ecosystem features by using either the standard accept–
reject algorithm or the novel SMC procedure. Our package extends the existing EEM 
methodology, originally developed for the generalised Lotka–Volterra model, to 
two additional model structures (the multispecies Gompertz and the Bimler–Baker 
model) and additionally allows users to define their own model structures.
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1  |  INTRODUC TION

The current biodiversity crisis requires urgent interventions to preserve 
ecosystems (Barnosky et al., 2011; Bergstrom et al., 2021). However, 
conservation decisions are risky, as they can lead to unexpected neg-
ative outcomes (Bergstrom et al., 2009; Buckley & Han, 2014; Roemer 
et al., 2002). Our ability to anticipate the consequences of interventions 
on ecosystems is critical to making informed decisions. Quantitative 
models can assist in making conservation decisions by simulating the 
effects of interventions (or disturbances) on ecosystem networks and 
predicting ecosystem changes (Adams et al., 2020). In practice, using 
these quantitative models requires large datasets to estimate driving 
parameters, such as species growth rates (Adams et al., 2020; Botelho 
et al., 2025), a difficult task in data- poor contexts such as biodiversity 
conservation, which limits quantitative model applications (Christie 
et al., 2021; Cook et al., 2013; McDonald- Madden et al., 2010).

When historical data are unavailable, ensemble ecosystem model-
ling (EEM, Baker et al., 2017) is a quantitative method for parameteris-
ing population models that uses theoretical ecosystem features rather 
than data. EEM can therefore be applied to any ecosystem for which 
a network structure (e.g. food web) has been proposed. Applications 
of EEM include risk analysis for the reintroduction of species (Baker 
et al., 2017; Peterson et al., 2021) and the management of invasive spe-
cies (Rendall et al., 2021). To date, two algorithms are designed for EEM 
generation: an accept–reject algorithm in Baker et al. (2017) and an 
adaptation of the sequential Monte Carlo approximate Bayesian com-
putation (SMC- ABC) algorithm of Drovandi and Pettitt (2011) in Vollert 
et al. (2024). While the accept–reject algorithm from Baker et al. (2017) 
is relatively straightforward to implement, this algorithm suffers from 
computational limitations for moderate to large ecosystems (Peterson & 
Bode, 2021), limiting its application to small ecosystem networks only. 
In contrast, the SMC- ABC algorithm of Vollert et al. (2024) can generate 
parameter sets (a sample of size N of parameter values) matching the 
desired features orders of magnitude faster for larger and more complex 
ecosystem networks but requires advanced statistical theory, mathe-
matical knowledge and programming skills to implement.

EEM was initially designed for the generalised Lotka–Volterra 
model, a well- studied deterministic framework with convenient equi-
librium properties for EEM (Baker et al., 2017). However, ecosystem 
population modelling literature considers many other structures. For 

example, the multispecies Gompertz model has been broadly used by 
the ecology community (Cooper et al., 2015; Hampton et al., 2013) 
because it is the time- continuous and deterministic equivalent of the 
first- order multivariate autoregressive model used elsewhere to simu-
late multispecies time series (Ives et al., 2003). While the generalised 
Lotka–Volterra model describes ecosystem dynamics based on logis-
tic growth, this model uses a Gompertz growth, which models slower 
population growth due to interactions at high densities. A second al-
ternative model is the Bimler–Baker model (Bimler et al., 2024), which 
can describe beneficial and harmful interactions between the same 
two species separately in a manner that makes these interactions 
structurally identifiable in the model. Generalising EEM to other mod-
els, such as the multispecies Gompertz and Bimler–Baker model, yields 
modelling flexibility that benefits the broader ecology community.

In this manuscript, we present a new R package, EEMtoolbox. 
Our package facilitates the usage of the recent statistical advances 
introduced in Vollert et al. (2024), offers a range of user- friendly 
functions allowing the parameter generation for three different 
ecosystem network model structures and can accommodate user- 
defined models. The package generates an ensemble of ecosystem 
models using a network and can also be used to forecast temporal 
changes in species abundances. As a case study, we demonstrate the 
usage of EEMtoolbox by simulating changes in species abundances 
immediately after the release of a small population of the avian top 
predator sihek (Todiramphus cinnamominus, extinct- in- the- wild spe-
cies) on Palmyra Atoll, a United States minor outlying Island in the 
Pacific Ocean. EEMtoolbox is publicly available on GitHub at https:// 
zenodo. org/ recor ds/ 14880924.

2  |  METHODS

2.1  |  Modelling dynamics of ecosystem networks

Ecosystems of interacting species are commonly represented as an 
ecosystem network (Cohen et al., 2012; Pimm et al., 1991): a graphi-
cal representation of how populations of species or groups of spe-
cies (nodes) interact (edges) with other populations. Ecosystem 
networks can represent predator–prey (Post et al., 2000), competitive 
or mutualist (Waser & Ollerton, 2006) relationships between species. 

4. We demonstrate the usage of EEMtoolbox by simulating changes in species abun-
dance immediately after the release of the sihek (Todiramphus cinnamominus, 
extinct- in- the- wild species) on Palmyra Atoll in the Pacific Ocean. With its simple 
interface, our package facilitates straightforward generation of EEM parameter 
sets, thus unlocking advanced statistical methods supporting conservation deci-
sions using ecosystem network models.

K E Y W O R D S
approximate Bayesian computation, ensemble ecosystem modelling, population dynamics, R 
package, sequential Monte Carlo
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Quantitative species models use this ecosystem network structure to 
forecast trajectories of species abundances (Adams et al., 2020; Baker 
et al., 2017; Ives et al., 2003; Murray, 2002). Our package EEMtoolbox 
can apply EEM (see Section 2.2) to three ordinary differential equation 
models of ecosystem networks (summarised in Table 1 and detailed on 
a simple predator–prey example in Appendix B, Data S1) and can also 
accommodate user- customised models (see Appendix C, Data S1).

2.2  |  Ensemble ecosystem modelling

EEM generates parameter sets using theoretical ecosystem features: 
feasibility (species coexistence) and stability (recovery of equilibrium 
populations following disturbances) (Baker et al., 2017). Mathematically, 
feasibility implies that a steady state of the model exists in which all spe-
cies' abundances are positive, and stability implies that the steady state 
is Lyapunov stable (see Appendix A, Data S1). Our package EEMtoolbox 
can apply EEM to other ecosystem models than the generalised Lotka–
Volterra model using two sampling algorithms: an accept–reject ap-
proach developed by Baker et al. (2017) and an SMC- ABC (Drovandi 
and Pettitt (2011)) developed by Vollert et al. (2024). Our package ex-
tends these two sampling approaches that were originally designed for 
the Lotka–Volterra model to other ecosystem models (see Table 1).

The EEM algorithm from Baker et al. (2017) samples parameter 
values of the generalised Lotka–Volterra equations and uses an ac-
cept–reject procedure to select parameter sets that yield feasible 
and stable ecosystems. The process (hereafter called standard- EEM) 
continues until the desired number of parameter sets is generated. 
However, the probability of randomly generating parameter sets that 

meet the feasibility and stability criteria decreases dramatically as the 
size and complexity of the ecosystem increase (Allesina & Tang, 2015; 
May, 1972). Thus, the usage of standard- EEM becomes practically im-
possible for large ecosystem networks.

The SMC- ABC algorithm from Vollert et al. (2024) (hereafter called 
SMC- EEM) can generate feasible and stable parameter ensembles for 
larger ecosystem networks than the standard- EEM approach. SMC- 
EEM learns from the trialled parameter sets how to better suggest 
parameter sets more likely to satisfy the conditions of feasibility and 
stability. Essentially, this approach samples parameter values, mea-
sures how poorly the sampled parameters satisfy the feasibility and 
stability constraints (this is called the discrepancy) and resamples and 
perturbs parameters to sequentially minimise the discrepancy. The 
target distributions of standard- EEM and SMC- EEM are theoretically 
identical. Thus, for a large number of samples, the empirical distribu-
tions of the parameter sets produced by standard- EEM and SMC- 
EEM are equivalent (Vollert et al., 2024) (see Appendix B.5, Data S1). 
Figure 1 illustrates the difference between these approaches.

3  |  DEMONSTR ATING THE 
FUNC TIONALIT Y OF THE EEMtoolbox R 
PACK AGE

3.1  |  Sihek case study

Sihek, a charismatic bird species endemic to Guam in the north- 
western Pacific, went extinct in the wild following the acci-
dental introduction of the invasive brown tree snake (Boiga 

Model Parameters description

Generalised Lotka–Volterra (Murray, 2002):
dni

dt
=

�
ri +

∑N

j=1
� i,jnj(t)

�
ni(t), ∀ i ∈

�
1, … ,N

�
ri: intrinsic growth rate of the ith species (
time−1

)

� i,j:per- capita interaction strength of jth 
species on the ith species abundance (
area. biomass−1time−1

)

Multispecies Gompertz (Gomatam, 1974; Ives 
et al., 2003):
dni

dt
=

�
ri +

∑N

j=1
� i,j log

�
nj(t)

��
ni(t), ∀ i ∈

�
1, … ,N

�
ri: intrinsic growth rate of the ith species (
time−1

)

� i,j: per- capita interaction strength of jth 
species on the ith species abundance (
time−1

)

Bimler–Baker (Bimler et al., 2024):

dni

dt
= rini(t)

⎡⎢⎢⎢⎢⎢⎣

1−exp

⎛⎜⎜⎜⎜⎜⎝

−�i,i−
∑N

j=1

j≠ i

�i,jnj(t)

⎞⎟⎟⎟⎟⎟⎠

⎤⎥⎥⎥⎥⎥⎦
+
∑N

j=1
� i,jnj(t)ni(t), ∀i∈

�
1, … ,N

�

ri: maximum intrinsic growth rate of the ith 
species 

(
time−1

)

�i,i and �i,j: per- capita beneficial interactions 
with conspecific and heterospecific 
populations, respectively (�i,i are unitless 
and �i,j in units of area. biomass−1)
� i,j: per- capita interaction strength of jth 
species on the ith species abundance (
area. biomass−1time−1

)

Note: For all models, ni(t) represents abundance of the ith species at time t and N is the total 
number of species. The generalised Lotka–Volterra model represents ecosystem dynamics based 
on the principle of logistic growth. The multispecies Gompertz represents ecosystem dynamics 
using Gompertz growth. The Bimler–Baker model is able to separate beneficial and harmful 
interactions between all pairs of species.

TA B L E  1  Mathematical models of 
ecosystem networks supported by our 
EEMtoolbox R package.
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irregularis) in its native range (Savidge, 1986; US Fish and Wildlife 
Service, 1990). Re- establishing a population of sihek in the wild 
is urgent due to the limited capacity of zoos and the increasing 
genetic concerns related to the species' small current population 
size (Trask et al., 2021). Since reintroducing sihek to their endemic 
range is not yet feasible, an experimental conservation introduc-
tion to Palmyra Atoll is being conducted in the meantime. Due to 
their ecology, Canessa et al. (2022) anticipate sihek replacing car-
nivorous crabs and cane spiders as top predators in Palmyra Atoll 
upon introduction.

We use EEM to explore the potential impacts of sihek introduction 
on the abundances of the resident species of Palmyra Atoll. Following 
Canessa et al. (2022), we simplify the system and assume that all spe-
cies will coexist after the release of the sihek (including sihek) and the 
ecosystem will eventually reach a stable equilibrium. We aim to sim-
ulate how the resident species' abundances would change over time 
when the initial abundance of sihek is set to a small number. We use 
EEM to analyse changes in the abundance of all species predicted 
to interact directly with the sihek (nine species or groups of species; 
Figure 2) immediately after the sihek release up to 10 years post- 
introduction. We use the upper bounds for the species' growth rates 
and types of interaction derived by Canessa et al. (2022), summarised 
in Table S1 and Figure 2.

3.2  |  Methods for generating ensembles of 
ecosystem models

EEM is the main function of the R package, and it can gener-
ate an ensemble of parameter sets that yield feasible and stable 

ecosystem networks (see Table 2 for relevant arguments of the 
function). Usage of the function for a two- species example is pro-
vided in Appendix B.2 (Data S1). A second, more illustrative ex-
ample is provided by the following code, which generates 5000 
parameter sets satisfying the feasibility and stability features of 
the whole ecosystem for the generalised Lotka–Volterra model of 
the sihek case study (see Table S1):

library(EEMtoolbox)  
interaction_matrix = matrix(  
               c(-1, 1, 1, 1, 1, 1, 1, 1, 1,  
               -1, -1, 0, -1, 0, 0, 0, 0, 1,  
               -1, 0, -1, -1, 0, 0, 0, 0, 1,  
               -1, 1, 1, -1, 0, 0, 1, 1, 0,  
               -1, 0, 0, 0, -1, 1, 1, 1, 0,  
               -1, 0, 0, 0, -1, -1, 0, 1, 0,  
               -1, 0, 0, -1, -1, 0, -1, 0, 1,  
               -1, 0, 0, -1, -1, -1, 0, -1, 1,  
               0, 1, -1, -1, 0, 0, 0, 1, -1),  
               ncol=9, nrow=9, byrow=TRUE)  
upper_bounds_growth_rate = c(1.1, 1.1, 1.5, 1.5, 0.39, 0.49, 3.0, 3.0, 
3.0)  
parameters_GLV = EEM(interaction_matrix,  
               upper_bounds_growth_rate = upper_bounds_growth_rate,  
               algorithm = "SMC- EEM")  

This code (using the SMC- EEM algorithm) allowed us to generate 
5000 parameter sets in approximately 4 min (wall time) on a virtual 
machine (AMD EPYC 7702 64- Core Processor with 64 GB of RAM, 

F I G U R E  1  A conceptual diagram comparing the process of sampling using standard- EEM (top row) and SMC- EEM (bottom row) 
algorithms. The standard- EEM search method (top row) randomly samples parameter sets from a pre- specified region, rejecting parameter 
sets that do not meet the constraints (grey dots) and accepting those that do (black dots). The SMC- EEM search method (bottom row) 
creates a discrepancy score that measures how different the desired and sampled system properties are to sequentially adapt sampling 
towards the objective region. Parameter sets that meet the constraints are accepted (black dots), while parameter sets that do not meet 
the constraints are rejected depending on their discrepancy score (grey dots are rejected and light green dots will be resampled from 
and perturbed to sequentially minimise the discrepancy score). This two- dimensional illustration aims to obtain parameter sets where 
0.1 ≤ xy ≤ 0.15 (curves in top right and bottom left region of parameter space); however, for EEM, these algorithms aim to obtain regions of 
parameter space that yield feasible and stable ecosystem models. EEM, ensemble ecosystem modelling; SMC, sequential Monte Carlo.
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    |  925PASCAL et al.

16 virtual processors). In contrast, generating 5000 parameter sets 
using the standard- EEM algorithm was achieved in approximately 
2 days and 7 h (wall time) on the same virtual machine. Both sampling 
processes were parallelised in the code using the optional argument 
n_cores (see Table 2).

Therefore, for this sihek case study (with nine interacting spe-
cies), the SMC- EEM method was much faster, and it is impractical to 

use standard- EEM. However, when the number of interacting spe-
cies is small—typically less than seven species (Vollert et al., 2024)—
the standard- EEM approach is often faster. In Appendix B.5 
(Data S1), we compare these sampling procedures for a two- species 
network. In this example, generating 20,000 parameter sets with the 
standard- EEM approach required 20 s (wall time), while the SMC- 
EEM approach required 35 s (wall time).

F I G U R E  2  Species interactions 
network for the sihek case study. 
All species also possess a negative 
intraspecies interaction, as is commonly 
assumed in ecosystem network models 
(Adams et al., 2020; Baker et al., 2017).

Cane spiders

Geckos

Terrestrial
arthropods

Seabirds

Sihek

Native trees

Terrestrial
crabs

Carnivorous
crabs

i has a negative effect on j

i has a positive effect on j

i j

i j

Cockroaches

Argument name Description Default value

interaction_matrix Bounds of interaction matrix for the 
ecosystem network

- 

lower_bounds_growth_rate Lower bounds for sampled growth rates 
(
ri
)

0

upper_bounds_growth_rate Upper bounds for sampled growth rates 
(
ri
)

5

n_ensemble Number of desired parameter sets 5000

model Model representing species interactions ‘GLV’

algorithm Sampling algorithm ‘standard- EEM’

n_cores Number of cores used for sampling 1L

Note: For the model argument, ‘GLV’ stands for generalised Lotka–Volterra. The argument n_cores 
sets the number of clusters used for generating parameter sets. The default value 1L signifies 
that the sampling process is sequential. Setting n_cores to a value larger than 1L parallelises the 
sampling process on the number of desired clusters. We refer the reader to the documentation of 
the function for further details, including possible parameter values for each argument.

TA B L E  2  Summary of relevant 
arguments of the EEM function.
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3.3  |  Generating projections of future abundances

The function plot_projections uses the obtained parameter 
sets to forecast changes in species abundances by numerically 
solving ordinary differential equations (ODEs, see Algorithm S1). 
This function inputs parameter sets (e.g. generated by the EEM 
function), initial species abundances and a time window for the 
forecast. For each parameter set, plot_projections solves the 
corresponding ODE using the function ode from the R package 
deSolve (Soetaert et al., 2010). Finally, the function estimates the 
median abundance and 95% prediction intervals for each species, 
and then at each time step (i.e. the 2.5% and 97.5% quantiles of 
the projected abundances), plots the corresponding graph (see 
Figure 3). We summarise in Table 3 all relevant parameters of the 
function. The following code forecasts species abundances over 
10 years, when the initial abundance of sihek is 0.1 (individuals 
per hectare) and those of the other species are 1 (individuals per 
hectare). For a more detailed demonstration of this function on a 
simple two- species example, see Appendix B.3 (Data S1), and for 
projections scaled to the steady state, see Appendix B.4 (Data S1).

plot_projections(parameters=parameters_GLV,  
               initial_condition=c(0.1, 1, 1, 1, 1, 1, 1, 1, 1),  
               t_window = c(0,10))

To generate projections as a data.frame and generate customised 
plots, the function calculate_projections included in our package can 
be used.

3.4  |  Comparing projections from different 
sampling algorithms

To illustrate that the standard- EEM and SMC- EEM approaches 
give equivalent predictions, we generated 20,000 parameter 
sets with the standard- EEM and the SMC- EEM approaches for a 
two- species ecosystem network (fully described in Appendix B, 
Data S1) and compared the abundance predictions (Figure 4). We 
used a two- species ecosystem network instead of the sihek case 
study because obtaining equivalent predictions would require 
impractically long time frames using the standard- EEM method 

F I G U R E  3  Forecasts of species abundances over 10 years for the sihek case study using the generalised Lotka–Volterra model. For 
illustrative purposes, we set the initial abundance of sihek to 0.1 (individuals per hectare) and the other species to 1 (individuals per 
hectare). Thicker lines represent the mean abundance and thin lines the 95% prediction interval (2.5% and 97.5% quantiles of the projected 
abundances). Forecasts for the multispecies Gompertz and the Bimler–Baker model are provided in Appendix E (Figures S5 and S6).

Sihek Terrestrial arthropods Terrestrial crabs

Geckos Native trees Seabirds

Cane spiders Carnivorous crabs Cockroaches

0.0 2.5 5.0 7.5 10.0 0.0 2.5 5.0 7.5 10.0 0.0 2.5 5.0 7.5 10.0

1e−03

1e−02

1e−01

1e+00

1e+01

1e−03

1e−02

1e−01

1e+00

1e+01

1e−03

1e−02

1e−01

1e+00

1e+01

Time

Ab
un

da
nc

e

Species
Cane spiders
Carnivorous crabs
Cockroaches
Geckos
Native trees
Seabirds
Sihek
Terrestrial arthropods
Terrestrial crabs
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(2 days and 7 h for 5000 samples) and a large number of samples 
due to the size of the ecosystem network (Vollert et al., 2024). 
For all species, the abundances predicted by models sampled with 
both methods overlap almost identically. This result suggests that 
the SMC- EEM approach produces the same distribution of param-
eter sets as the standard- EEM approach, and substantial addi-
tional evidence for this point is detailed in Vollert et al. (2024). Any 
discrepancies are due to the stochasticity inherent in the random 
sampling processes used in both methods, due to the finite num-
ber of samples used in both methods, often referred to as Monte 
Carlo error.

4  |  DISCUSSION

This paper showcases a new R package EEMtoolbox that quickly and 
easily generates parameter sets for ecosystem model ensembles, for 
up to three different model structures, as well as for user- defined 
models. The package can either sample parameter values using a 
standard accept–reject approach recommended for small networks 
as in Baker et al. (2017) or via an SMC- ABC algorithm recommended 
for larger networks (Drovandi & Pettitt, 2011; Vollert et al., 2024). By 
facilitating the usage of these advanced statistical methods within 
an R package, EEM can now be applied to parameterize models of 
a broad range of ecosystem network structures, yielding immediate 
utility for improving conservation decisions based on these models. 
Our package extends EEM to three model structures (generalised 
Lotka–Volterra, the multispecies Gompertz and the Bimler–Baker 
models) and can be applied to user- defined model structures (see 
Appendix C, Data S1), which allows the broader ecology community 
to benefit from greater flexibility of EEM methods.

We acknowledge other factors might hinder EEM applications. 
First, EEM assumes the studied ecosystem will reach a stable and 
feasible equilibrium, which is convenient for parameterization but 
not always appropriate (Cuddington, 2001; Francis et al., 2021; 
Vollert et al., 2025). Examples include ecosystems with species' 
extinctions or those that are strongly impacted by external in-
fluences. We refer the reader to Vollert et al. (2025) on the appli-
cability of feasibility and stability in conservation modelling and 
alternative calibration approaches. Second, EEM requires defining 
a species interaction network, which remains a difficult task (see, 
e.g. Peterson et al., 2021). Uncertainties in the ecosystem network 
(such as existence or not of direct interactions between species, 
and misspecification of interaction) might result in misleading pre-
dictions of species abundances (Adams et al., 2020). Third, EEM 
can provide new information but not direct recommendations for 
ecosystem management (Baker et al., 2017). In our case study, the 
sihek recovery team used EEM as an additional source of insights 
about predation and competition, following a broad risk screening 
for sihek introduction to Palmyra Atoll (Vernet et al., 2024). EEM is 
therefore especially useful when rapid exploration of scenarios and 
frequent updating of projections and risk assessments are desired by 
decision- makers (Canessa et al., 2022).
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