
S1 Supplementary Methods

S1.1 Model code and parameterisation

We make the following observations in addition to comments in the code. Firstly, identifiable interactions

(beta ij in the code) are defined as a vector, which must then be matched to their correct position in the

interaction matrix. This is the role of the icol and irow vectors defined in the data block. Our Github

repository also contains the data prep.R file, which will show how to create these vectors from appropriate

input data. Secondly, the joint model.stan code is written to use a negative binomial function (lines 86

and 88, and again 102 and 104) with an exponential inverse link (lines 56 and 68), the latter is equivalent

to a log link function. These lines, along with the dispersion parameter (lines 29 and 77, and wherever the

negative binomial function is used) must all be modified if a different family and link function are to be

used. Thirdly, we impose the following constraints to improve convergence, avoid over-parameterisation

and maintain identifiability of our parameters ri and ej (Huber et al. 2004; Kidziński et al. 2021; Niku

et al. 2021). We define both the effect and the response parameters as unit vectors, which means we

only require T-1 degrees of freedom (where T is the total number of neighbour elements) to estimate

all effect values and S-1 degrees of freedom (where S is the total number of focal elements) to estimate

all response values. This loss of a degree of freedom arises from the fact that the matrix whose i, j-

elements are all products ri×ej is of rank 1. Though both latent variables ri and ej may be susceptible to

sign switching when running the model on multiple chains, estimates for identifiable and unidentifiable

interactions should not be affected. All ri and ej’s are multiplied by a a unique, positive constrained

weight parameter which controls the average strength of the resulting interactions.

S1.2 Assessing parameter identifiability

We assess which interactions parameters are identifiable in the data prep.R file (lines 30-44) and store

this information in the matrix Q. To do so, we first create a model matrix Xi for each focal species

i. This matrix has as many rows as performance measurements for focal species i and t + 1 columns,

where t is the total number of neighbouring species across the full dataset. Its first column is a vector

of 1’s (representing the intercept) and all remaining columns denote the neighbour abundances recorded
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for each observation. We transform this matrix into its row-reduced echelon form Ri using the rref()

function from the pracma package (Borchers 2022), and we then left multiply Ri by its transpose to

produce a t + 1 × t + 1 symmetric matrix Zi. We can use this matrix Zi to determine which neighbour

abundances are linearly independent of all other neighbour abundances as follows. We ignore the first

row of Zi because it corresponds to the intercept which we always want to include in our model. For

every other row k > 1, its corresponding predictor is linearly independent if and only if it consists

entirely of 0’s except for its k’th element. If this is true, the interaction parameter corresponding to that

row (neighbour abundance) is thus identifiable and we assign it a value of 1 in the i’th row and k − 1’th

column of Q. Alternatively, the corresponding element in Q is given a value of 0. Examining the Zi

matrix of each focal species i therefore allows us to construct the full Q matrix of inferrable pairwise

interaction parameters. Given that Zi is symmetric, note that the checks for linear independence could

equivalently be done using the columns of Zi.

In a similar way, we also evaluate whether predictors (neighbours) are linearly independent across

the entire dataset in order to be able to correctly distinguish their respective effect parameters ej for the

RIM. The same procedure as above is performed across the entire model matrix X (without subsetting

for each focal species) and neighbours in the entire matrix Z are evaluated for linear independence. This

is done early on in the master.R file (lines 27-37) as a check before transforming the data into the format

required by STAN. Given enough data, a lack of linear independence across the entire dataset is very

unlikely; indeed, it would only arise if multiple neighbours’ densities were perfectly correlated across all

neighbourhoods.

S1.3 Evaluating model convergence for the case study data

The NDD-only model, the RI-only model and the joint model were all run on the case study data with 4

chains and 7000 iterations, of which the first 5000 were discarded. The NDDM converged well with R̂ <

1.01 for all parameters. Convergence for the RIM-only model was less ideal with few γ and B parameters

reaching R̂ values below 1.01, with a median R̂ of 1.35 for values in γ and of 1.13 for elements of B.

Convergence for the joint model was improved over the RIM, especially for the interaction parameters,

with a median R̂ of 1.24 for values in γ and of 1.005 for elements of B. This was achieved by setting
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adapt delta = 0.99 and maximum treedepth = 20; we did not increase these values beyond

as this was unlikely to resolve all convergence difficulties. In addition to the lack of other warnings and

the good convergence of these models on simulated data, it stands to reason that the lack of convergence

observed here is at least partially due to a difficult geometry of the posteriors. Both the r and e parameters

are constrained due to their parameterisation as unit vectors; this means that if a neighbour j only engages

in few interactions, uncertainty about its ej can create uncertainty for the values of e for other neighbours.

Similarly, a shift in either ri or in the values of ej for all observed neighbours of i can produce similar

values in B. If one value of ri gets shifted during sampling, this will necessarily shift all other r values,

which may impact ej and then in turn all other e values, which can then also affect γi. The degree to

which this correlation is problematic for R̂ will depend intimately on the data at hand.

This lack of convergence leads to multi-modal posteriors for those parameters with higher R̂, as

different chains get “stuck” in slightly different local optima. For our case study data, we observed

that these local optima were very close and overlapping in both parameter values and in the likelihood

which is being maximised (Fig. S1). Indeed, the Monte Carlo standard error for all parameters always

remained lower than the posterior standard deviation, for both the RIM-only and joint model. This

means that all parameters were estimated to a higher accuracy than their standard error, and further

simulation was unlikely to substantially modify posterior inferences. Furthermore, posterior intervals for

these parameters were similar across all models and strongly overlapping. Fig. S2 shows the posterior

intervals of all γ parameters across all three models to illustrate this behaviour (showing this for the

B parameters would be unwieldy due to the high number of pairwise interactions in our case study).

Comparison between all three model estimates was only possible because, whilst the NDDM sets to 0 all

interactions where species were observed to co-occur but the interactions remained unindentifiable, those

accounted for less than 5% of all interactions in the dataset.
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Figure S1: Diagnostic plot for the least convergent γi parameter (R̂ = 3.21) in the joint model. For all

graphs, values for that γi are given on the y-axis. The first graph shows a scatterplot of γi against the

accumulated log-posterior on the x-axis, whilst the second graph is a scatterplot of γi against the average

Metropolic acceptance rate. Each point corresponds to one sample. The bottom graph is a violin plot of

the distribution of γi at each of the sampled step sizes (one per chain). This figure illustrates that despite

the chains not converging on the exact same values for γi, estimates are very close between chains and

the associated log posteriors overlap. No divergent transitions were present. The figure was plotted using

the stan par() function from the rstan package.

35



Figure S2: See caption on next page.



Figure S2: (Caption for previous page.) Posterior interval distributions for all 22 γ parameters as returned

by the RIM-only, NDDM-only and joint model. For all graphs, posterior values are given on the x-axis

and correspond to log(γ). The red dot indicates the median of each distribution. The γi with the highest

R̂ in the joint model (R̂ = 3.21) is shown in the bottom-most left corner. Even when posteriors are

multi-modal, note that posterior distributions constrast considerably to these parameters’ assumed prior

distribution.

S1.4 Case study Data

S1.4.1 Community data

We applied this framework to annual wildflower community dataset from Western Australia. This

system is a diverse and well-studied community of annual plants which germinate, grow, set seed and die

within approximately 4 months every year. Individual fecundity data were collected in 2016, when 100

50 x 50 cm plots established in the understory of West Perenjori Reserve (29o28’01.3”S 116o12’21.6”E)

were monitored over the length of the full field season. The resulting dataset includes between 29 to over

1000 counts of individual plant seed production from 22 different focal species (with a median of 108

observations per species), in addition to the identity and densities of all neighbouring individuals within

the interaction neighbourhood of each focal plant. Interaction neighbourhoods varied in radius from 3 to

5 cm depending on the size of the focal species (Martyn 2020). Total neighbourhood diversity was 71

wildflower species, 19 of which were recorded fewer than 10 times across the whole dataset. The species-

specific effects of this latter group of species on focals were deemed negligible due to their extremely

low density, they were thus grouped into an ’other’ category and their effects on focals averaged. This

resulted in 53 potential neighbour identities. Plots were randomly positioned across the reserve to capture

natural environmental variation in the system. Major factors known to impact plant composition and

within species abundances are soil P concentrations, shade, and the presence of woody debris (Dwyer

et al. 2015). Natural levels of soil P are very low in this system with elevated P concentrations occurring

predominantly on the edge of the reserve near agricultural fields that use P fertiliser. All study plots
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were placed far from reserve edges to avoid artificially elevated levels of P, which are easy to detect

due to an association between high P levels and extensive exotic grass abundances, which are largely

absent from the core reserve where this study was conducted. Thus, environmental variation captured

by this dataset reflects natural variation in tree cover, soil nutrients and woody debris. To account for

confounding effects between plot location and plant density, half of all plots were thinned (a quarter to

60% abundance and a quarter to 30%). Thinning did not target any particular species.

In study systems which allow it, a proportion of interaction neighbourhoods can instead be thinned

prior to the experiment to randomly remove neighbouring individuals and provide observations for low-

density estimates of interactions. Though this steps is not strictly necessary, thinning certain neighbour-

hoods can also reduce potential confounding effects between the environment and interactions and thus

provide more accurate estimates of interaction effects. Environmental data known to affect performance

can also be recorded and included in the model (Bimler et al. 2018) to minimise those confounding

effects.

We required species demographic rates (seed survival and germination) in order to scale model inter-

action estimates into interaction strengths. Species demographic rates for 16 of our focal species were

estimated from a database of field experiments carried out between 2016 and 2019 where seedbags were

placed in the field to estimate germination rates, and ungerminated seeds were evaluated in the lab for

survivability. The remaining species were assigned mean demographic rates from these experiments.

Further details on the methods used for collecting those seed rates are available in section S1.4.2.

S1.4.2 Seed germination and survival data

Seed demographic rates were collected from a set of field experiments conducted by T. Martyn, M.

Raymundo and I. Towers at Perenjori reserve between 2015 and 2019. Experiments differed both in

the methods and in which focal species were included in ways which are detailed further below, such

that each focal species had a different number of replicates across all experiments. Given how much

seed rates estimates have been found to vary within species and according to a range of both individual

and environmental factors, we chose to average results from these multiple experiments for each focal
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species in order to provide a point estimate which captures a wide range of conditions under which

seeds may grow. For those species which did not have any field estimates of seed rates (Austrostipa

elegantissima, Erodium sp., Petrorhagia dubia) or seed survival rate (Gilberta tenuifolia), no replication

(Waitzia acuminata) or an unrealistically low estimate of germination rate (Goodenia pusilliflora), we

substituted the community mean instead.

For each experiment, mature seeds were collected at the end of the growing season (September -

October) from multiple populations of each focal species located throughout the reserve. Immature or

damaged seeds were not included, and collected seed was homogenised for each focal species to eliminate

bias associated with local adaptation within populations. Germination rate was estimated by planting

seeds in the field along gradients of soil phosphorus, woody canopy cover and herbaceous vegetation

density and either directly counting the number of seeds which had germinated or comparing recruitment

rates to unplanted plots after a sufficient amount of time had elapsed. Seeds were planted during late-

September to mid-October, mimicking natural seed dispersal timing for wildflowers in the area. Seed

survival rates were estimated using either the remaining seeds or a separate batch of seeds and assessing

viability of the seeds using tetrazolium staining.

T. Martyn experiment: For 19 focal species (the full species list excluding A. elegantissima, P. dubia

and G. tenuifolia), germination bags containing 20 seeds each were planted in the field in 2016 across

multiple areas of Perenjori Reserve. Out of the 30 bags, 19 were collected in 2017 and the remaining were

collected in 2018. Due to a severe drought in 2017, half of the bags collected that year were watered dur-

ing the field season and prior to collection. Germination bags were then brought back to the Mayfield Lab

facilities at the University of Queensland, Brisbane, and seeds extracted. Seeds were examined for signs

of germination in the field (broken or empty seed coat) and those remaining were placed in germination

trays and a germination chamber to mimic light and temperature conditions conducive to germination.

Trays were watered with Gibberellic acid once to twice a week and seedlings were recorded and removed

until no more seedlings emerged. Remaining, ungerminated seeds were then assessed as dead (mouldy)

or potentially viable. The remaining potentially viable seeds were assessed for viability using tetrazolium

staining, contributing to our estimates of seed survival rates. For this procedure, embryos in each seed
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were exposed by either removing the seed coat or by creating a thin cut along the seed coat. The exposed

embryos were then placed on a six-well germination plate and 2 ml of 0.25% Tetrazolium solution was

added to each well to stain the embryos, before covering them and storing them at 25◦C overnight. To

check for staining, embryos were dissected under a dissecting microscope. Viable seeds showed a dark

pink embryo while non-viable seeds did not stain or were stained in a splotchy way.

M. Raymundo experiment: This experiment was carried out on the focal species H. glutinosum, T.

cyanopetala, T. ornata and V. rosea from 2015 to 2017. However, a severe drought in 2017 made the

second round of data collection impossible and thus we only include results for 2016 here. Ten plots were

established measuring 0.5 m x 0.5 m at each of three sites in Perenjori Reserve for a total of 30 plots.

Each plot was divided into 25 0.1 m x 0.1 m subplots and focal species were randomly assigned a subplot

in each plot. Thirty seeds of each focal species were planted in the designated subplot in late September

2015 and a plastic ring 10 cm in diameter and 1 cm high was placed in each subplot where seeds were

added to limit seed movement among subplots. Another five subplots were assigned plastic rings to serve

as controls for the effect of the rings on non-experimental communities. The remaining 15 subplots served

as controls where no seeds or rings were added allowing for recruitment from either natural dispersal or

from the seed bank. Blocks were placed in such a way as to span shaded and open areas, bare ground

and dense herbaceous vegetation, and areas with native dominated and exotic dominated assemblages.

Before implementing the experiment in 2015, plots were surveyed to record the number and identity of

all adult plants in each subplot. Due to the randomisation of seed addition into subplots, some subplots

had focal species already in them. As all focal species were common to this reserve, it is also likely that

seeds for all species were in the seed banks in at least some subplots. There was no way to determine

this in advance, though when adult individuals of a focal species were present in a subplot prior to the

implementation of our experiment, we expected that some seedlings in the following year would be from

the seedbank as well as our planted seeds and looked for evidence of this (more than 30 individuals) in

data from 2016. We therefore compared average densities of successful focal recruits and those which

emerged in situ between sown, control, and ringed subplots to assess seed limitation and germination

rate. To measure seed survival rates, thirty seeds of each focal species were also assessed for viability

using tetrazolium staining using the same procedure as for the T. Martyn experiment.
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I. Towers experiment: This experiment was carried out on the focal species A. calendula, G. berar-

diana, H. glutinosum, H. glabra,P. aroides, P. debilis, P. canescens, T. cyanopetala, T. ornata, V. rosea

and W. acuminata in 2018 and 2019. Pairs of free-draining germination trays were deployed across a

gradient of canopy cover in mid-October of both years, filled with soil, which had either been collected

from the field and heat-sterilised to render pre-existing seeds nonviable (2019), or simply collected from

the roadside (2018). Each germination tray consisted of 24 cells, with two cells randomly assigned to

each focal species. In each cell, 15 seeds of the designated focal species were broadly distributed and

lightly misted with water to facilitate seed-soil contact and minimise removal by wind. Trays placed

in 2018 used seeds collected at the end of the 2017 growing season and dry after-ripened at 60◦C for

a month before being stored in cool, dry conditions at the University of Queensland. Seeds planted in

2019 were collected at the end of the 2018 growing season and were placed directly from the field into

the germination trays. To re-establish microbial communities for those trays where the soil had been

heat-treated, seeds were lightly covered with a small amount of untreated soil collected from the site in

which they were buried. Untreated soil was collected from directly underneath coarse woody debris in

patches where it was present as prior research in this system has shown that the effect of coarse woody

debris on plant performance is partially attributable to debris-specific soil microbial communities (A.

Pastore unpublished data). Some of the trays received the additions of leaf litter, but the results of this

treatment were not included for the seed rates used in this study. Seed germination rate was measured by

counting the number of seedlings which emerged in the field, but seed survival rate was not calculated in

this experiment.

S1.5 A model for annual plant population dynamics

The joint model framework returns species-specific estimates of intrinsic fitness (γi), as well as as

a focal species × neighbour species composite matrix B of identifiable (βi,j) and unidentifiable (riej)

interaction estimates which quantify the effects of one neighbour j on the intrinsic fitness of a focal

species i. Though useful as they are, these estimates can lead to a wider range of potential applications

when integrated into models of population dynamics. For example, we might be more interested in the

effects of neighbours on the density or growth rate of a focal species rather than on its proxy for lifetime
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reproductive success. Importantly, it is necessary to specify a model describing population dynamics in

order to draw conclusions about the effects of interactions and network structure on the maintenance of

community diversity and stability.

We defined the following model for annual plants with a seed bank (Levine and HilleRisLambers 2009;

Mayfield and Stouffer 2017; Bimler et al. 2018) which describes the rate of change in a focal species’ i

abundance of seeds in a seed bank from one year to the next:

Ni,t+1

Ni,t

= (1− gi) si + giFi,t (S1)

where Fi,t measures the number of viable seeds produced per germinated individual whilst gi and si are

the seed germination and seed survival rate, respectively. In a simplified case where the focal species i

interacts with only one other species j, our use of a log link function implies that Fi,t in this model of

population dynamics is given by:

Fi,t = λie
−αiigiNi,t−αijgjNj,t (S2)

where λi corresponds to seed number in the absence of interaction effects, and αii and αij are the inter-

action strengths between species i and its intraspecific and interspecific neighbours respectively. Here it

is αij and αii which are equivalent to Bi,j in Eq. 3 of the main text.

We determine the scaled interaction strengths α��’s by including λi, gi and si in such a way that these

variables are cancelled out when the α��’s are substituted for the α’s in our annual plant population model

(Godoy and Levine 2014; Bimler et al. 2018).

α��
ij =

gjαij

ln(ηi)
(S3)

with ηi =
λigi
θi

and θi = 1− (1− gi)(si). Note that our model evaluates the rate of change of seeds in the

seed bank, and this is reflected in the scaling terms used to compare interaction strengths between focal
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species. Substituting α��’s for α’s in Eq. S1 gives us:

Ni,t+1

Ni,t

= (1− θi) + θiηie
−ln(ηi)(α

��
iiNi,t+α��

ijNj,t) (S4)

where we can see that the α��’s are directly proportional to the density of neighbours. Relating this

population model to the joint model framework, we recover the following:

Bi,j = αij (S5)

γi = ln(λi) (S6)

ηi =
eγigi
θi

(S7)

ln(ηi) = γi (ln(gi)− ln(θi)) (S8)

α��
i,j =

gjBi,j

ln(ηi)
=

gjBi,j

γi (ln(gi)− ln(θi))
(S9)

As we show here, the exact form of the rescaled interactions as well as intrinsic fitness can therefore

vary depending on the specific population dynamic model applied and may include other demographic

rates which reflect species-level differences in growth and mortality. In our case study, we were only

able to scale interactions between pairs of focal species because we required demographic rates for both

species involved in the interaction (Eq. S9) and rates for non-focal species were not available. Because

intrinsic fitness is estimated by the model framework and not directly observed, we used the mean of the

γi posterior distribution returned by our model in our scaling of the interaction coefficients.
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